
Also includes slides and contents from:

“Compiler Construction, course at University of Bern by Prof. O. Nierstrasz

“Compiler”, course at University of Science and Technology of China (USTC) by Prof. BaojianHua

Optimizing Compilers

Prof. Andrea Marongiu

(andrea.marongiu@unimore.it)

mailto:.marongiu@unimore.it

Outline

• Compiler structure

• Intermediate Representations

• Optimization

3

• Any compiler must perform two major tasks

• Analysis of the source program

• Synthesis of a machine-language program

The Structure of a Compiler (1)

Compiler

Analysis Synthesis

source
code

target
code

Front End Back End
IR

IR scheme

© Oscar Nierstrasz Intermediate Representation 4

• front end produces IR
• optimizer transforms IR to more efficient program
• back end transform IR to target code

Why use intermediate representations?

1. Software engineering principle

• break compiler into manageable pieces

2. Simplifies retargeting to new host

• isolates back end from front end

3. Simplifies support for multiple languages

• different languages can share IR and back end

4. Enables machine-independent optimization

• general techniques, multiple passes

© Oscar Nierstrasz Intermediate Representation 5

IR scheme

© Oscar Nierstrasz Intermediate Representation 6

• Multiple front-ends to support different languages
• Multiple back-ends to support different target ISAs
• A common middle-end with same optimization passes

• Order might change

Front
end 1

Front
end 2

Front
end N

…

Back
end 1

Back
end 2

Back
end M

…

Middle end
(optimizer)

language 1

language 2

language N

ISA 1

ISA 2

ISA M

IR 1 IR L

IR 2 …

The Structure of a Compiler (2)

7

Scanner Parser
Semantic
Routines

Code
Generator

Optimizer

Source
Program Tokens Syntactic

Structure

Symbol and
Attribute
Tables

(Used by all Phases of The Compiler)

(Character
Stream)

Intermediate
Representation

Target machine code

FRONT-END

BACK-END

The Structure of a Compiler (3)

8

Scanner Parser
Semantic
Routines

Code
Generator

Optimizer

Source
Program Tokens Syntactic

Structure

Symbol and
Attribute
Tables

(Used by all
Phases of
The Compiler)

Scanner
➢ The scanner begins the analysis of the

source program by reading the input,
character by character, and grouping
characters into individual words and

symbols (tokens)

 RE (Regular expression)
 NFA (Non-deterministic Finite Automata)
 DFA (Deterministic Finite Automata)
 LEX

(Character
Stream)

Intermediate
Representation

Target machine code

FRONT-END

BACK-END

9

• Lexical Analysis

• Recognize tokens and ignore white spaces,

comments

• Error reporting

• Model using regular expressions

• Recognize using Finite State Automata

Generates token stream

Scanner

The Structure of a Compiler (4)

10

Scanner Parser
Semantic
Routines

Code
Generator

Optimizer

Source
Program Tokens Syntactic

Structure

Symbol and
Attribute
Tables

(Used by all
Phases of
The Compiler)

Parser
➢Given a formal syntax specification

(typically as a context-free grammar
[CFG]), the parse reads tokens and groups
them into units as specified by the
productions of the CFG being used.

➢ As syntactic structure is recognized, the
parser either calls corresponding semantic
routines directly or builds a syntax tree.

 CFG (Context-Free Grammar)
 BNF (Backus-Naur Form)
 GAA (Grammar Analysis Algorithms)
 LL, LR, SLR, LALR Parsers
 YACC

(Character
Stream)

Intermediate
Representation

Target machine code

FRONT-END

BACK-END

11

• Check syntax and construct abstract syntax

tree

• Error reporting and recovery

• Model using context free grammars

• Recognize using Push down automata/Table

Driven Parsers

if

== = ;

b 0 a b

Parser

The Structure of a Compiler (5)

12

Scanner Parser
Semantic
Routines

Code
Generator

Optimizer

Source
Program

(Character
Stream)

Tokens Syntactic

Structure

Intermediate
Representation

Symbol and
Attribute
Tables

(Used by all
Phases of
The Compiler)

Semantic Routines
➢ Perform two functions

◼ Check the static semantics of each
construct

◼ Do the actual translation
➢ The heart of a compiler

 Syntax Directed Translation
 Semantic Processing Techniques
 IR (Intermediate Representation)

Target machine code

FRONT-END

BACK-END

13

• Check semantics

• Error reporting

• Disambiguate

overloaded operators

• Type coercion

• Static checking

• Type checking

• Control flow checking

• Unique ness checking

• Name checks

Semantic Analysis

The Structure of a Compiler (6)

14

Scanner Parser
Semantic
Routines

Code
Generator

Optimizer

Source
Program Tokens Syntactic

Structure

Symbol and
Attribute
Tables

(Used by all
Phases of
The Compiler)

Optimizer
➢ The IR code generated by the semantic

routines is analyzed and transformed into
functionally equivalent but improved IR
code

➢ This phase can be very complex and slow
➢Optimizations mostly at the high-level IR

(middle-end)
➢ Some optimizations at the low-level IR

(back-end)

(Character
Stream)

Intermediate
Representation

Target machine code

FRONT-END

BACK-END

The Structure of a Compiler (7)

15

Source
Program

(Character
Stream)

Scanner
Tokens

Parser
Syntactic

Structure
Semantic
Routines

Intermediate
Representation

Optimizer

Code
Generator

Code Generator

➢ Transform IR into machine code

 Interpretive Code Generation
 Generating Code from Tree/Dag
 Grammar-Based Code Generator

Target machine code

FRONT-END

BACK-END

The Structure of a Compiler (8)

16

Scanner
[Lexical Analyzer]

Parser
[Syntax Analyzer]

Semantic Process
[Semantic analyzer]

Code Generator
[Intermediate Code Generator]

Code Optimizer

Tokens

Parse tree

Abstract Syntax Tree w/
Attributes

Non-optimized Intermediate
Code

Optimized Intermediate Code

Code Optimizer

Target machine code

Outline

• Compiler structure

• Intermediate Representations

• Optimization

Kinds of IR

• Abstract syntax trees (AST)

• Linear operator form of tree (e.g., postfix notation)

• Directed acyclic graphs (DAG)

• Control flow graphs (CFG)

• Program dependence graphs (PDG)

• Static single assignment form (SSA)

• 3-address code

• Hybrid combinations

© Oscar Nierstrasz Intermediate Representation 18

Categories of IR

• Structural

• graphically oriented (trees, DAGs)

• nodes and edges tend to be large

• heavily used on source-to-source translators

• Linear

• pseudo-code for abstract machine

• large variation in level of abstraction

• simple, compact data structures

• easier to rearrange

• Hybrid

• combination of graphs and linear code (e.g. CFGs)

• attempt to achieve best of both worlds

© Oscar Nierstrasz Intermediate Representation 19

Important IR properties

• Ease of generation

• Ease of manipulation

• Cost of manipulation

• Level of abstraction

• Freedom of expression (!)

• Size of typical procedure

• Original or derivative

© Oscar Nierstrasz Intermediate Representation 20

Subtle design
decisions in the IR can
have far-reaching
effects on the speed
and effectiveness of
the compiler!
➔ Degree of exposed
detail can be crucial

Abstract syntax tree

© Oscar Nierstrasz Intermediate Representation 21

An AST is a parse tree with
nodes for most non-terminals
removed.

Since the program is already
parsed, non-terminals needed
to establish precedence and
associativity can be collapsed! A linear operator form of

this tree (postfix) would be:

x 2 y * -

Directed acyclic graph

© Oscar Nierstrasz Intermediate Representation 22

A DAG is an AST with
unique, shared nodes
for each value.

x := 2 * y + sin(2*x)

z := x / 2

Control flow graph

• A CFG models transfer of control in a program

• nodes are basic blocks (straight-line blocks of code)

• edges represent control flow (loops, if/else, goto …)

© Oscar Nierstrasz Intermediate Representation 23

if x = y then

S1

else

S2

end

S3

3-address code

© Oscar Nierstrasz Intermediate Representation 24

• Statements take the form: x = y op z

• single operator and at most three names

x – 2 * y
t1 = 2 * y

t2 = x – t1

> Advantages:

— compact form

— names for intermediate values

Typical 3-address codes

assignments

x = y op z

x = op y

x = y[i]

x = y

branches goto L

conditional branches if x relop y goto L

procedure calls

param x

param y

call p

address and pointer

assignments

x = &y

*y = z

© Oscar Nierstrasz Intermediate Representation 25

3-address code — two variants

© Oscar Nierstrasz Intermediate Representation 26

Quadruples Triples

• simple record structure
• easy to reorder
• explicit names

• table index is implicit name
• only 3 fields
• harder to reorder

IR choices

• Other hybrids exist

• combinations of graphs and linear codes

• CFG with 3-address code for basic blocks

• Many variants used in practice

• no widespread agreement

• compilers may need several different IRs!

• Advice:

• choose IR with right level of detail

• keep manipulation costs in mind

© Oscar Nierstrasz Intermediate Representation 27

The GNU Compiler Collection: gcc

GCC has three IRs

GENERIC
basically an AST

GIMPLE
3AC, SSA RTL

simple (Lisp-inspired), low-level

The GNU Compiler Collection: gcc

GCC has three IRs

Previously, the only common IR was RTL
(Register Transfer Language)
• Drawbacks of RTL for high-level optimizations :
• RTL is a low-level IR, works well for optimizations close to machine

(e.g., register allocation)
• Some high level information is difficult to extract from RTL (e.g. array

references, data types etc.)
• Optimizations involving such higher level information are difficult to

do using RTL.
• Introduces stack too soon, even if later optimizations don’t demand it.

The GNU Compiler Collection: gcc

GCC has three IRs

Why not ASTs for optimization?

ASTs contain detailed function information but are not
suitable for optimization because
• Lack of a common representation
• No single AST shared by all front-ends
• So each language would have to have a different implementation of

the same optimizations
• Difficult to maintain and upgrade so many optimization frameworks
• Structural Complexity
• Lots of complexity due to the syntactic constructs of each language

The GNU Compiler Collection: gcc

GCC has three IRs

Result: GIMPLE

The Goals of GIMPLE are
• Lower control flow

➢ Program = sequenced statements + unrestricted jump

• Simplify expressions
➢ Typically: two operand assignments!

• Simplify scope
➢ move local scope to block begin, including temporaries

Notice
• Lowered control flow ! nearer to register machines + Easier SSA!

The GNU Compiler Collection: gcc

Example: C code (test.c)

int test1()

{

int a;

if (a)

{

int b;

b = 2 + a + b;

}

return 0;

}

The GNU Compiler Collection: gcc

Example: GIMPLE code
int test1 ()

{

int b;

int a;

int D.1196;

int D.1195;

BLOCK 2

PRED: ENTRY (fallthru)

if (a != 0)

goto <bb 3>;

else

goto <bb 4>;

SUCC: 3 (true) 4 (false)

BLOCK 3

PRED: 2 (true)

D.1195 = a + 2;

b = D.1195 + b;

SUCC: 4 (fallthru)

BLOCK 4

PRED: 2 (false) 3 (fallthru)

D.1196 = 0;

SUCC: 5 (fallthru)

BLOCK 5

PRED: 4 (fallthru)

return D.1196;

SUCC: EXIT

}

BLOCK 3

PRED: 2 (true)

D.1195 = a + 2;

b = D.1195 + b;

SUCC: 4 (fallthru)

BLOCK 4

PRED: 2 (false) 3 (fallthru)

D.1196 = 0;

SUCC: 5 (fallthru)

BLOCK 5

PRED: 4 (fallthru)

return D.1196;

SUCC: EXIT

}

The GNU Compiler Collection: gcc

Example: GIMPLE code
main ()

{

int b;

int a;

int D.1196;

int D.1195;

BLOCK 2

PRED: ENTRY (fallthru)

if (a != 0)

goto <bb 3>;

else

goto <bb 4>;

SUCC: 3 (true) 4 (false)

NOTE: The CFG is encoded in GIMPLE

The GNU Compiler Collection: gcc

Important phases of GCC (test.c)

void test2()

{

int a=2, b=3, c=4;

while (a<=7)

{

a = a+1;

}

if (a<=12)

a = a+b+c;

}

• Three-address representation breaks expressions down into
tuples of no more than 3 operands

• Temporaries are introduced to hold intermediate values needed
to compute complex expressions.

• Control structures are explicated into conditional jumps.

The GNU Compiler Collection: gcc

Phases of GCC - dumping

The GNU Compiler Collection: gcc

Phases of GCC - dumping

gcc –c –fdump-tree-all test.c

CFG created

Low GIMPLE created

Parsed C code

Let’s ignore
these for now…

Outline

• Compiler structure

• Intermediate Representations

• Optimization

© Marcus Denker

Optimization

Optimization: The Idea

• Transform the program to improve efficiency

• Performance: faster execution

• Size: smaller executable, smaller memory footprint

Tradeoffs: 1) Performance vs. Size

2) Compilation speed and memory

39

© Marcus Denker

Optimization

Optimizations in the Backend

• Register Allocation

• Instruction Selection

• Peep-hole Optimization

40

GENERIC
GIMPLE RTL

© Marcus Denker

Optimization

Register Allocation

• Processor has only finite amount of registers

• Can be very small (x86)

• Temporary variables

• non-overlapping temporaries can share one register

• Passing arguments via registers

• Optimizing register allocation very important for good

performance

• Especially on x86

41

© Marcus Denker

Optimization

Instruction Selection

• For every expression, there are many ways to realize

them for a processor

• Example: Multiplication*2 can be done by bit-shift

Instruction selection is a form of optimization

42

© Marcus Denker

Optimization

Optimization in the middle-end

OUR MAIN FOCUS

43

GENERIC
GIMPLE RTL

© Marcus Denker

Optimization

Examples of optimization:

Constant Folding

• Evaluate constant expressions at compile time

• Only possible when side-effect freeness guaranteed

c:= 1 + 3 c:= 4

true not false

Caveat: Floats — implementation could be different between machines!

44

© Marcus Denker

Optimization

Examples of optimization:

Constant Propagation

• Variables that have constant value, e.g. b := 3

• Later uses of b can be replaced by the constant

• If no change of b between!

b := 3

c := 1 + b

d := b + c

b := 3

c := 1 + 3

d := 3 + c

Analysis needed, as b can be assigned more than once!

45

© Marcus Denker

Optimization

Examples of optimization:

Copy Propagation

• for a statement x := y

• replace later uses of x with y, if x and y have not been

changed.

x := y

c := 1 + x

d := x + c

x := y

c := 1 + y

d := y + c

Analysis needed, as y and x can be assigned more than once!

46

© Marcus Denker

Optimization

Examples of optimization:

Algebraic Simplifications

• Use algebraic properties to simplify expressions

-(-i) i

b or: true true

Important to simplify code for later optimizations

47

© Marcus Denker

Optimization

Examples of optimization:

Strength Reduction

• Replace expensive operations with simpler ones

• Example: Multiplications replaced by additions

y := x * 2 y := x + x

Peephole optimizations are often strength reductions

48

© Marcus Denker

Optimization

Examples of optimization:

Dead Code

• Remove unnecessary code

• e.g. variables assigned but never read

b := 3

c := 1 + 3

d := 3 + c

c := 1 + 3

d := 3 + c

> Remove code never reached

if (false)

{a := 5}

if (false) {}

49

© Marcus Denker

Optimization

Examples of optimization:

Simplify Structure

• Similar to dead code: Simplify CFG Structure

• Optimizations will degenerate CFG

• Needs to be cleaned to simplify further optimization!

50

© Marcus Denker

Optimization

Examples of optimization:

Delete Empty Basic Blocks

51

© Marcus Denker

Optimization

Examples of optimization:

Fuse Basic Blocks

52

© Marcus Denker

Optimization

Examples of optimization:

Common Subexpression Elimination (CSE)

Common Subexpression:
• There is another occurrence of the expression whose evaluation always precedes this

one
• operands remain unchanged

Local (inside one basic block): When building IR
Global (complete flow-graph)

53

b := a + 2

c := 4 * b

b < c?

b := 1

d := a + 2

t1 := a + 2

b := t1

c := 4 * b

b < c?

b := 1

d := t1

SSA form

• Static Single Assignment Form

• Encodes information about data and control flow

• Two constraints:

• Each definition has a unique name

• Each use refers to a single definition

• all uses reached by a definition are renamed accordingly

• Advantages:

• Simplifies data flow analysis & several optimizations

• SSA size is linear to program size

• Eliminates certain dependences (write-after-read, write-after-write)

• Example:

x := 5
x := x +1
y := x * 2

x0 := 5
x1 := x0 +1
y0 := x1 * 2

SSA form

• Consider a situation where two control-flow paths

merge (e.g. due to a loop, or an if-statement)

read(x)
if (x > 0)

y:= 5
else

y:=10
x := y

y := 5 y := 10

x := y

read(x)
x > 0

y0 := 5 y1 := 10

x1 := y

read(x0)
x0 > 0

should this be y0 or y1?

SSA form

• The compiler inserts special join functions (called -

functions) at points where different control flow paths

meet.

y0 := 5 y1 := 10

y2 = (y0, y1)
x1 := y2

read(x0)
x0 > 0

 is not an executable function!

If we do need to generate executable code from
this form, we insert appropriate copy statements
in the predecessors:

y0 := 5
y2 := y0

y1 := 10
y2 := y1

x1 := y2

© Marcus Denker

Optimization

SSA Optimizations

• SSA: Static Single Assignment Form

• Definition: Every variable is only assigned once

• Simplifies analysis and optimization (in many cases)

Properties

• Definitions of variables (assignments) have a list of all uses

• Variable uses (reads) point to the one definition

• CFG of Basic Blocks

57

© Marcus Denker

Optimization

Examples: Optimization on SSA

• We take three simple ones:

• Constant Propagation

• Copy Propagation

• Simple Dead Code Elimination

58

© Marcus Denker

Optimization

Recall: Constant Propagation

• Variables that have constant value, e.g. b := 3

• Later uses of b can be replaced by the constant

• If no change of b between!

b := 3

c := 1 + b

d := b + c

b := 3

c := 1 + 3

d := 3 + c

Analysis needed, as b can be assigned more than once!

59

b := 3

c := 1 + b

b := 4

d := b + c

b := 3

c := 1 + 3

b := 4

d := 4 + c

Now the two uses of b refer to different definitions

© Marcus Denker

Optimization

Constant Propagation and SSA

• Variables are assigned once

• We know that we can replace all uses by the constant!

b1 := 3

c1 := 1 + b1

d1 := b1 + c1

b1 := 3

c1 := 1 + 3

d1 := 3 + c1

60

b1 := 3

c1 := 1 + b1

b2 := 4

d1 := b2 + c1

b1 := 3

c1 := 1 + 3

b2 := 4

d1 := 4 + c1

With SSA names uses are easily associated to their definitions

© Marcus Denker

Optimization

Recall: Copy Propagation

• for a statement x := y

• replace later uses of x with y, if x and y have not been

changed.

x := y

c := 1 + x

d := x + c

x := y

c := 1 + y

d := y + c

Analysis needed, as y and x can be assigned more than once!

61

© Marcus Denker

Optimization

Copy Propagation and SSA

• for a statement x1 := y1

• replace later uses of x1 with y1

x1 := y1

c1 := 1 + x1

d1 := x1 + c1

x1 := y1

c1 := 1 + y1

d1 := y1 + c1

62

© Marcus Denker

Optimization

Dead Code Elimination and SSA

• Variable is live if the list of uses is not empty.

• Dead definitions can be deleted

• (If there is no side-effect)

63

Let’s try it on gcc

First step is to build the SSA form

int func ()

{

int i=1, j=1, k=0;

while (k < 200)

if (j < 20)

{

j = i;

k++;

}

else

{

j = k;

k += 2;

}

return j;

}

This happens at pass pass_build_ssa (*)

gcc –c –fdump-tree-ssa func.c

(*) Source code is in <HERO_SDK>/hero-gcc-toolchain/src/riscv-gcc/gcc/tree-into-ssa.c

Into SSA (func.c.018t.ssa)

Constant Propagation Example

i3 = 1

j4 = 1

k5 = 0

j1 = Φ(j4 (2), j6 (4), j8 (5))

k2 = Φ(k5 (2), k7 (4), k9 (5))

k2 < 200?

j1 < 20? return j1

j6 = i3

k7 = k2 + 1

j8 = k2

k9 = k2 + 2

bb2

bb6

bb3 bb7

bb4 bb5

Constant propagation
candidates.

1

1

0

The definitions becomes
dead code. Why?

1

Constant Propagation Example

i3 = 1

j4 = 1

k5 = 0

j1 = Φ(1 (2), 1 (4), j8 (5))

k2 = Φ(0 (2), k7 (4), k9 (5))

k2 < 200?

j1 < 20? return j1

j6 = i3

k7 = k2 + 1

j8 = k2

k9 = k2 + 2

bb2

bb6

bb3 bb7

bb4 bb5

Does block 5 ever execute?

To find this, we need
conditional constant
propagation.

Conditional Constant Propagation

i3 = 1

j4 = 1

k5 = 0

j1 = Φ(1 (2), 1 (4), j8 (5))

k2 = Φ(0 (2), k7 (4), k9 (5))

k2 < 200?

j1 < 20? return j1

j6 = i3

k7 = k2 + 1

j8 = k2

k9 = k2 + 2

bb2

bb6

bb3 bb7

bb4 bb5

Does block 5 ever execute?

j1==1; k2==0

j1==1; k7==1 j8==1; k9==2

j1==1; k2==1 (4) ^ 2 (5)

j1==1; k7==2 j8==1; k9==4

j1==1; k2==2 (4) ^ 4 (5)

We found an
invariant:

j1 == 1

Conditional Constant Propagation

i3 = 1

j4 = 1

k5 = 0

j1 = Φ(1 (2), 1 (4), j8 (5))

k2 = Φ(0 (2), k7 (4), k9 (5))

k2 < 200?

j1 < 20? return j1

j6 = i3

k7 = k2 + 1

j8 = k2

k9 = k2 + 2

bb2

bb6

bb3 bb7

bb4 bb5

Does block 5 ever execute?

j1==1; k2==0

j1==1; k7==1 j8==1; k9==2

j1==1; k2==1 (4) ^ 2 (5)

j1==1; k7==2 j8==1; k9==4

j1==1; k2==2 (4) ^ 4 (5)

We found an
invariant:

j1 == 1

1

1

DEAD CODE!

1

Conditional Constant Propagation

i3 = 1

j4 = 1

k5 = 0

j1 = Φ(1 (2), 1 (4), j8 (5))

k2 = Φ(0 (2), k7 (4), k9 (5))

k2 < 200?

j1 < 20? return 1

j6 = i3

k7 = k2 + 1

j8 = k2

k9 = k2 + 2

bb2

bb6

bb3 bb7

bb4 bb5 DEAD CODE!

Conditional Constant Propagation

i3 = 1

j4 = 1

k5 = 0

j1 = Φ(1 (2), 1 (4), j8 (5))

k2 = Φ(0 (2), k7 (4))

k2 < 200?

return 1

j6 = i3

k7 = k2 + 1

bb2

bb4

bb5

bb3

To enable this in GCC we need
optimization pass do_ssa_ccp (*)

gcc –c –O1 –fdump-tree-ccp func.c

(*) Source code is in <HERO_SDK>/hero-gcc-toolchain/src/riscv-gcc/gcc/tree-ssa-ccp.c

Conditional Constant

Propagation (func.c.031t.ccp1)

i3 = 1

j4 = 1

k5 = 0

(5))

k2 = Φ(0 (2), k7 (4))

k2 < 200?

return 1

j6 = i3

k7 = k2 + 1

bb2

bb4

bb5

bb3

Aggressive Dead Code Elimination

Do you notice the “useless” code on the left?

A statement is live, iff:

1. has side effect (I/O, call, store, …), and

2. defines a var which is used in live stm.

Lattice algorithm again:

1. init live stm

2. mark all other dead until proven
to be live.

This function can be further inlined and eliminated!

return 1

i3 = 1

j4 = 1

k5 = 0

(5))

k2 = Φ(0 (2), k7 (4))

k2 < 200?

return k2

j6 = i3

k7 = k2 + 1

bb2

bb4

bb5

bb3

Aggressive Dead Code Elimination:

pitfalls

A statement is live, iff:

1. has side effect (I/O, call, store, …), and

2. defines a var which is used in live stm.

The 2nd property is call data-
dependency!

live

live

live

Should this be deleted?

We need a notion of
control-dependency!

Fixing this problem

• If a statement S is live, then

• if T S is control-dependent on T, T should also be live

x = 3

x<10?

…

…

live

Control Dependency

• A block Y is control-dependent on X iff

• there exists an edge X->v, which v->exit goes through Y

• there exists a path X->exit which does not go through y

X

v

Y

exit

u

X

v

Y

exit

u

Aggressive Dead Code Elimination

Example

CFG r

1

2

5 4

exit

reverse CFG r

1

2

5 4

exit

r1

2

5

4

exit

n 1 2 4 5 r

DF {r} {2, r} {r} {2} {}

i3 = 1

j4 = 1

k5 = 0

(5))

k2 = Φ(0 (2), k7 (4))

k2 < 200?

return k2

j6 = i3

k7 = k2 + 1

bb2

bb4

bb5

bb3

Aggressive Dead Code Elimination

Example

CDG r

1

2

5 4

n 1 2 4 5 r

DF {r} {2, r} {r} {2} {}

live

i3 = 1

j4 = 1

k5 = 0

(5))

k2 = Φ(0 (2), k7 (4))

k2 < 200?

return k2

j6 = i3

k7 = k2 + 1

bb2

bb4

bb5

bb3

live

live

live

i3 = 1

j4 = 1

k5 = 0

(5))

k2 = Φ(0 (2), k7 (4))

k2 < 200?

return k2

j6 = i3

k7 = k2 + 1

bb2

bb4

bb5

bb3

Aggressive Dead Code Elimination

Example

CDG r

1

2

5 4

n 1 2 4 5 r

DF {r} {2, r} {r} {2} {}

live return 1

i3 = 1

j4 = 1

k5 = 0

(5))

k2 = Φ(0 (2), k7 (4))

k2 < 200?

return k2

j6 = i3

k7 = k2 + 1

bb2

bb4

bb5

bb3

Aggressive Dead Code Elimination

Example

To enable this in GCC we need
optimization pass tree_ssa_cd_dce (*)

gcc –c –O2 –fdump-tree-cddce func.c

(*) Source code is in <HERO_SDK>/hero-gcc-toolchain/src/riscv-gcc/gcc/tree-ssa-dce.c

We need aggressive
optimization level

Dead Code Elimination

with Control Dependence (func.c.037t.cddce1)

gcc optimization pipeline

First step is to build the SSA form

Over 100 optimization passes

gcc –c –fdump-tree-all func.c

(*) Source code is in <HERO_SDK>/hero-gcc-toolchain/src/riscv-gcc/gcc/tree-ssa*.c

